Using ARIMA to Predict the Growth in the Subscriber Data Usage
نویسندگان
چکیده
Telecommunication companies collect a deluge of subscriber data without retrieving substantial information. Exploratory analysis this type will facilitate the prediction varied information that can be geographical, demographic, financial, or any other. Prediction therefore an asset in decision-making process telecommunications companies, but only if retrieved follows plan with strategic actions. The exploratory was implemented research to predict usage trends based on historical time-stamped data. predictive outcome unknown approximated using at hand. We have used 730 points selected from Insights Data Storage (IDS). These were collected hourly statistic traffic table and subjected growth usage. Auto-Regressive Integrated Moving Average (ARIMA) model forecast. In addition, we normal Q-Q, correlogram, standardized residual metrics evaluate model. This showed p-value 0.007. result supports our hypothesis predicting increase growth. ARIMA predicted 3 Mbps maximum 14 Gbps. experimentation, compared Convolutional Neural Network (CNN) achieved best results UGRansome performed better execution speed by factor 43 for more than 80,000 rows. On average, it takes 0.0016 s execute one row, 0.069 CNN same thus making 43× (0.0690.0016) faster provide road map so telecommunication productive improving their Quality Experience (QoE). study provides understanding seasonality stationarity involved usage’s growth, exposing new network concerns facilitating development novel models.
منابع مشابه
Using Machine Learning ARIMA to Predict the Price of Cryptocurrencies
The increasing volatility in pricing and growing potential for profit in digital currency have made predicting the price of cryptocurrency a very attractive research topic. Several studies have already been conducted using various machine-learning models to predict crypto currency prices. This study presented in this paper applied a classic Autoregressive Integrated Moving Average(ARIMA) model ...
متن کاملUsing Social Influence to Predict Subscriber Churn
The saturation of mobile phone markets has resulted in rising costs for operators to obtain new customers. These operators thus focus their energies on identifying users that will churn so they can be targeted for retention campaigns. Typical churn prediction algorithms identify churners based on service usage metrics, network performance indicators, and demographic information. Social and peer...
متن کاملUsing Clickstream Data to Predict WWW Usage
The purpose of this study is to consider the determinants of World Wide Web (WWW) usage using clickstream data. Clickstream data is a natural byproduct of a user accessing WWW pages, and refers to the sequence of pages visited and the time these pages were viewed. A key component of this study is a large scale empirical analysis of clickstream data from a representative sample of PC owning hous...
متن کاملmetrics for the detection of changed buildings in 3d old vector maps using als data (case study: isfahan city)
هدف از این تحقیق، ارزیابی و بهبود متریک های موجود جهت تایید صحت نقشه های قدیمی سه بعدی برداری با استفاده از ابر نقطه حاصل از لیزر اسکن جدید شهر اصفهان می باشد . بنابراین ابر نقطه حاصل از لیزر اسکنر با چگالی حدودا سه نقطه در هر متر مربع جهت شناسایی عوارض تغییر کرده در نقشه های قدیمی سه بعدی استفاده شده است. تمرکز ما در این تحقیق بر روی ساختمان به عنوان یکی از اصلی ترین عارضه های شهری می باشد. من...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Eng
سال: 2023
ISSN: ['2673-4117']
DOI: https://doi.org/10.3390/eng4010006